skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Croker, Kevin S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recently, it was pointed out that invoking a large value of the cosmic microwave background (CMB) optical depth,τCMB = 0.09, could help resolve tensions between Dark Energy Survey Instrument DR2 baryon acoustic oscillation data and the CMB. This is larger than the value ofτCMB = 0.058 measured from the Planck low-ℓpolarization data. Traditionally,τCMBis thought of as a constraint on reionization’s midpoint. However, recent observations and modeling of the Lyαforest of high-zquasars at 5 < z < 6 have tightly constrained the timing of the last 10%–20% of reionization, adding nuance to this interpretation. Here, we point out that fixing reionization’s endpoint, in accordance with the latest Lyαforest constraints, rendersτCMBa sensitive probe of the duration of reionization, as well as its midpoint. We compare low and high values ofτCMBto upper limits on the patchy kinematic Sunyaev–Zel'dovich (pkSZ) effect, another CMB observable that constrains reionization’s duration, and find that a value ofτCMB = 0.09 is in ≈2σtension with existing limits on the pkSZ from the South Pole Telescope (SPT). The strength of this tension is sensitive to the choices involved in modeling the other CMB foregrounds in the SPT measurement, and in the modeling of the pkSZ signal itself. 
    more » « less
    Free, publicly-accessible full text available July 3, 2026